Numerical Methods

Finding Roots

- Rewrite f(x) = 0 to x = g(x)
- To solve x = g(x), we iteratively calculate x = g(x)
- The problem is how to choose g(x) so as to ensure convergence

The equation f(x) = 0, where $f(x) = x^3 - 7x + 3$, may be rearranged to give $x = (x^3 + 3)/7$.

Intersection of the graphs of y = x and $y = (x^3 + 3)/7$ represent roots of the original equation $x^3 - 7x + 3 = 0$.

x

The rearrangement $x = (x^3 + 3)/7$ leads to the iteration

$$x_{n+1} = \frac{x_n^3 + 3}{7}, \quad n = 0, 1, 2, 3, \dots$$

To find the middle root α , let initial approximation $x_0 = 2$.

$$x_1 = \frac{x_0^3 + 3}{7} = \frac{2^3 + 3}{7} = 1.57143$$

$$x_2 = \frac{x_1^3 + 3}{7} = \frac{1.57143^3 + 3}{7} = 0.98292$$

$$x_3 = \frac{x_2^3 + 3}{7} = \frac{0.98292^3 + 3}{7} = 0.56423$$

$$x_4 = \frac{x_3^3 + 3}{7} = \frac{0.56423^3 + 3}{7} = 0.45423$$
 etc.

The iteration slowly converges to give $\alpha = 0.441$ (to 3 s.f.)

Fixed-point Iteration Example(1)

To solve

$$x - x^{1/3} - 2 = 0$$

rewrite as

$$x_{\text{new}} = g_1(x_{\text{old}}) = x_{\text{old}}^{1/3} + 2$$

or

$$x_{\text{new}} = g_2(x_{\text{old}}) = (x_{\text{old}} - 2)^3$$

or

$$x_{\text{new}} = g_3(x_{\text{old}}) = \frac{6 + 2x_{\text{old}}^{1/3}}{3 - x_{\text{old}}^{2/3}}$$

Fixed-point Iteration Example(2)

$$g_1(x) = x^{1/3} + 2$$
$$g_2(x) = (x - 2)^3$$
$$g_3(x) = \frac{6 + 2x^{1/3}}{3 - x^{2/3}}$$

k	$g_1(x_{k-1})$	$g_2(x_{k-1})$	$g_3(x_{k-1})$
0	3	3	3
1	3.4422495703	1	3.5266442931
2	3.5098974493	-1	3.5213801474
3	3.5197243050	-27	3.5213797068
4	3.5211412691	-24389	3.5213797068
5	3.5213453678	-1.451×10^{13}	3.5213797068
6	3.5213747615	-3.055×10^{39}	3.5213797068
7	3.5213789946	-2.852×10^{118}	3.5213797068
8	3.5213796042	∞	3.5213797068
9	3.5213796920	∞	3.5213797068

Fixed point theorem

A continuous f is contractive if there is an L < 1 such that

$$|f(x) - f(y)| \le L|x - y|$$

for all x, y in the domain of f.

Note: If |f'(x)| < 1 for all $x \in [a, b]$, then f is contractive in [a, b]

- $g:[a,b]
 ightarrow \mathcal{R}$ has a unique fixed point if: • g:[a,b]
 ightarrow [a,b] (assures existence) • g is contractive (assures uniqueness)

A fixed point iteration has the form $p_{k+1} = g(p_k)$

If g is continuous and $\lim_{n\to\infty} g(p_n) = P$, then P is a fixed point of g.

If g and g' are continuous in [a,b], $g(x) \in [a,b]$ for all $x \in [a,b]$ and $p_0 \in [a,b]$, then $|g'(P)| \leq K < 1 \Rightarrow \{p_n\} \longrightarrow P$ $|g'(P)| > 1 \Rightarrow \{p_n\} \text{ will not converge to } P$

Convergent Iteration

$$x-e^{-x}=0 \quad \Rightarrow \quad x_{k+1}=e^{-x_k}, \; x_0=0$$

$$g(x)=e^{-x},$$

$$g:[0,1]\to[0,1]$$

$$|g'(x)|=e^{-x}<1 \; \text{for} \; x>0$$

Example: Fixed Point Iteration

Find the largest root of $16x^2 - 32x + 15 = 0$ by fixed point iteration.

Some possibilities:

1.
$$x = 16x^2 - 31x + 15$$

2.
$$x = \sqrt{32x - 15}/4$$

3.
$$x = x^2/2 + 15/32$$

4.
$$x = -15/16(x-2)$$

5.
$$x = 2 - 15/16x$$

Ex., plot of $f(x) = 16x^2 - 32x + 15$

Take $x \in [1.2, 1.3]$

Ex., check hypothesis

1.
$$g(x) = 16x^2 - 31x + 15$$

 $|g'(x)| = |32x - 31| > 1$

2.
$$g(x) = \sqrt{32x - 15}/4$$
 $|g'(x)| = 4/\sqrt{32x - 15} < 1$ and $g: [1.2, 1.3] \rightarrow [1.2, 1.3]$

3.
$$g(x) = x^2/2 + 15/32$$
, $|g'(x)| = |x| > 1$

4.
$$g(x) = -15/16(x-2)$$
,
 $g: [1.2, 1.3] \rightarrow [1.17, 1.34]$

5.
$$g(x) = 2 - 15/16x$$
 $g: [1.2, 1.3] \rightarrow [1.21, 1.28]$ and $|g'(x)| = 15/16x^2 < 1$

Ex., formulations #2 and 5

$g(x) = \sqrt{32x - 15}/4$	g(x) = 2 - 15/16x
$x_0 = 1.2000$	$x_0 = 1.2000$
$x_1 = 1.2093$	$x_1 = 1.2188$
$x_2 = 1.2170$	$x_2 = 1.2308$
: :	i:
$x_{12} = 1.2463$	$x_{12} = 1.2499$
$x_{13} = 1.2470$	$x_{13} = 1.2499$
:	
$x_{27} = 1.2499$	
$x_{28} = 1.2499$	

Convergence of Fixed Point Iteration

- |g'(x)| < 1: (a), (b)
- |g'(x)| > 1. (c), (d)

Example

Find a root of $x^3 - x^2 - 1 = 0$ with $x_0 = 1.5$

	$X-1-X^2=0$	$x^3 = 1 + x^2$	$x^2(x-1)=1$
g(x)	$1+X^2$	$(1+x^2)^{1/3}$	$(x - 1)^{1/2}$
g'(x)	-2x ⁻³	2x/[3(1+x²)²/³]	-1/[2(x-1) ^{3/2}]
Comment	/g'(x)/ < 1 for x > 1.3	<i> g'(x) < 1</i> for 1 ≤ x ≤ 2	/g'(x)/ > 1 for x < 1.6

The rearrangement $x = (x^3 + 3)/7$ leads to the iteration

$$x_{n+1} = \frac{x_n^3 + 3}{7}, \quad n = 0, 1, 2, 3, \dots$$

For $x_0 = 2$ the iteration will converge on the middle root α , since $g'(\alpha) < 1$.

$$\alpha = 0.441$$
 (to 3 s.f.)

1.5 Example

Root-finding problem: $0 = \exp(x) - 2x - 1$

Fixed-point problem: $x = \ln(2x + 1)$

and g'(x)=2/(2x+1). g'(x) is a decreasing function. Thus $\max_{\xi\in[1,2]}|g'(x)|=|g'(1)|=2/3$

We set L = 2/3.

1.13 Error bounds

We get

$$|x_k - \xi| = |g(x_{k-1}) - g(\xi)|$$

$$\leq L|x_{k-1} - \xi|$$

$$\leq L(|x_{k-1} - x_k| + |x_k - \xi|)$$

and consequently:

$$|x_k - \xi| \le \frac{L}{1 - L} |x_k - x_{k-1}|$$

This is called an a-posteriori estimate.

1.14 Error bounds (Conts.)

Analogously we can derive an a-priori bound

$$|x_k - \xi| \le \frac{L^k}{1 - L} |x_1 - x_0|$$

How many iterations do we need in our example for an accuracy of $|x_k - \xi| \le 10^{-8}$?

1.15 Rate of Convergence

Definition. [1.4] Assume $\lim_{k\to\infty} x_k = \xi$.

• Linear convergence, if

$$|x_k - \xi| < \epsilon_k \quad \text{and} \quad \lim_{k \to \infty} \frac{\epsilon_{k+1}}{\epsilon_k} = \mu \quad \text{with} \quad \mu \in (0,1)$$

- Superlinear convergence if $\mu = 0$.
- Sublinear convergence if $\mu = 1$, e.g. $\epsilon_k = \frac{1}{k+1}$
- Asymptotic rate of convergence $ho = -\log_{10}\mu$

$$\rho$$
 large \Rightarrow fast (linear) convergence

$$\rho$$
 small \Rightarrow slow (linear) convergence