### Numerical Methods

Finding Roots

## Finding roots / solving equations

• General solution exists for equations such as  $ax^2 + bx + c = 0$ 

The quadratic formula provides a quick answer to *all* quadratic equations.

However, *no* exact *general solution (formula)* exists for equations with powers greater than 4.

### Methods For Solving Nonlinear Equations Are Iterative

- generate a sequence of points x<sup>(k)</sup>, k = 0, 1, 2, ... that converge to a solution; x<sup>(k)</sup> is called the kth *iterate*; x<sup>(0)</sup> is the *starting point*
- computing  $x^{(k+1)}$  from  $x^{(k)}$  is called one *iteration* of the algorithm
- each iteration typically requires one evaluation of f (or f and f') at  $x^{(k)}$
- algorithms need a stopping criterion, e.g., terminate if

 $|f(x^{(k)})| \leq \text{specified tolerance}$ 

- speed of the algorithm depends on:
  - the cost of evaluating f(x) (and possibly, f'(x))
  - the number of iterations

#### Roots of Nonlinear Equations Stop-criteria

Unrealistic stop-criteria

 $x_{k+1} \neq x_k$ 

#### Realistic stop-criteria



# Typical stopping criteria:

• x-increment  $|x_{k+1} - x_k| \le \tau_x$ 

• f-value 
$$f(x_k) \leq \tau_f$$

• number of iterations  $k \ge k_{\max}$ 

### Root Finding: f(x)=0

#### **Method 1: The Bisection method**

Theorem: If f(x) is continuous in [a,b] and if f(a)f(b)<0, then there is atleast one root of f(x)=0 in (a,b).





### **Bisection method**

The idea for the Bisection Algorithm is to cut the interval [a, b] you are given in half (bisect it) on each iteration by computing the midpoint  $x_{mid}$ . The midpoint will replace either *a* or *b* depending on if the sign of  $f(x_{mid})$  agrees with f(a) or f(b).

Step 1: Compute  $x_{mid} = (a+b)/2$ Step 2: If  $sign(f(x_{mid})) = 0$  then end algorithm else If  $sign(f(x_{mid})) = sign(f(a))$  then  $a = x_{mid}$ else  $b = x_{mid}$ 

Step 3: Return to step 1



This shows how the points *a*, *b* and  $x_{mid}$  are related.

#### Bisection method

- Find an interval [x<sub>0</sub>,x<sub>1</sub>] so that f(x<sub>0</sub>)f(x<sub>1</sub>) < 0 (This may not be easy.).</li>
- Cut the interval length into half with each iteration, by examining the sign of the function at the mid point.

$$x_2 = \frac{x_0 + x_1}{2}$$

- If  $f(x_2) = 0$ ,  $x_2$  is the root.
- If  $f(x_2) \neq 0$  and  $f(x_0)f(x_2) < 0$ , root lies in  $[x_0, x_2]$ .
- Otherwise root lies in  $[x_2, x_1]$ .
- Repeat the process until the interval shrinks to a desired level.

#### **Pseudo code (Bisection Method)**

1. Input  $\in > 0$ , m > 0,  $x_1 > x_0$  so that  $f(x_0) f(x_1) < 0$ . Compute  $f_0 = f(x_0)$ . k = 1 (iteration count) 2. Do

{ (a) Compute  $f_2 = f(x_2) = f\left(\frac{x_0 + x_1}{2}\right)$ (b) If  $f_2 f_0 < 0$ , set  $x_1 = x_2$  otherwise set  $x_0 = x^2$  and  $f_0 = f_2$ . (c) Set k = k+1. }

3. While  $|f_2| \ge \epsilon$  and  $k \le m$ 

4. set 
$$x = x_2$$
, the root.

Consider finding the root of  $f(x) = x^2 - 3$ . Let  $\varepsilon$ step = 0.01,  $\varepsilon$ abs = 0.01 and start with the interval [1, 2]. Bisection method applied to  $f(x) = x^2 - 3$ .

| Α           | b      | f(a)    | f(b)   | c = (a + b)/2 | f(f)    | Update | b-a    |
|-------------|--------|---------|--------|---------------|---------|--------|--------|
| 1           | 2      | -2      | 1      | 1.5           | -0.75   | a = c  | 0.5    |
| 1.5         | 2      | -0.75   | 1      | 1.75          | 0.062   | b = c  | 0.25   |
| 1.5         | 1.75   | -0.75   | 0.0625 | 1.625         | -0.359  | a = c  | 0.125  |
| 1.625       | 1.75   | -0.3594 | 0.0625 | 1.6875        | -0.1523 | a = c  | 0.0625 |
| 1.6875      | 1.75   | -0.1523 | 0.0625 | 1.7188        | -0.0457 | a = c  | 0.0313 |
| 1.7188      | 1.75   | -0.0457 | 0.0625 | 1.7344        | 0.0081  | b = c  | 0.0156 |
| 1.71988/td> | 1.7344 | -0.0457 | 0.0081 | 1.7266        | -0.0189 | a = c  | 0.0078 |

| <b>Bisection Method: Example</b> |         |           |          |          |           |  |
|----------------------------------|---------|-----------|----------|----------|-----------|--|
| хо                               | x1      | f(xo)     | f(x1)    | x2       | f(x2)     |  |
| 0                                | 4       | -7        | 1        | 2        | 1         |  |
| 0                                | 2       | -7        | 1        | 1        | 1         |  |
| 0                                | 1       | -7        | 1        | 0.5      | -1.625    |  |
| 0.5                              | 1       | -1.625    | 1        | 0.75     | -0.015625 |  |
| 0.75                             | 1       | -0.015625 | 1        | 0.875    | 0.560547  |  |
| 0.75                             | 0.875   | -0.015625 | 0.560547 | 0.8125   | 0.290283  |  |
| 0.75                             | 0.8125  | -0.015625 | 0.290283 | 0.78125  | 0.141876  |  |
| 0.75                             | 0.78125 | -0.015625 | 0.141876 | 0.765625 | 0.064274  |  |

$$f(x) = (x-1)(x-2)(x-4) + 1$$

```
Bisection applied to f(x) = \exp(x) - 3x^2:
tol= 1.00e-002
Iteration Interval
        0 [0.500 1.000]
        1 [0.750 1.000]
        2 [0.875 1.000]
        3 [0.875 0.938]
        4 [0.906 0.938]
        5 [0.906 0.922]
        6 [0.906 0.914]
```

xsol = 9.1016e - 001f(xsol) = -4.4246e - 004

#### **Number of Iterations and Error Tolerance**

• Length of the interval (where the root lies) after n iterations

$$e_n = \frac{x_1 - x_0}{2^{n+1}}$$

• We can fix the number of iterations so that the root lies within an interval of chosen length ∈ (error tolerance).

$$\mathbf{e}_n \leq \in n \geq \left(\frac{\ln(x_1 - x_0) - \ln \epsilon}{\ln 2}\right) - 1$$

• Use the theorem from the course to find a bound for the number of iterations needed to achieve an approximation with accuracy  $10^{-3}$  to the solution of  $x^3 - x - 1 = 0$  lying in the interval [1, 4].

$$\frac{b-a}{2^n} = \frac{3}{2^n} \le 10^{-3},$$

$$3 \cdot 10^3 \le 2^n \Rightarrow n \ge \frac{\log_{10}(3 \cdot 10^3)}{\log_{10}(2)} \approx 11.55$$

For example, if we were solving  $g(x) = x^2 - 3 = 0$  starting in the interval [1, 2], with a tolerance of  $10^{-3}$ , the number of iterations needed would be the largest integer satisfying

$$i \geq \frac{\log\left(\frac{2-1}{10^{-3}}\right)}{\log(2)}$$
$$= \frac{\log(10^3)}{\log(2)}$$
$$= \frac{3}{\log(2)}$$
$$= 9.9658$$

Thus, 10 iterations would be needed.

Find a bound for the number of Bisection method iterations needed to achieve an approximation with accuracy  $10^{-9}$  to the solution of  $x^5 + x = 1$  lying in the interval [0, 1]. Find an approximation to the root with this degree of accuracy.

#### Convergence criteria

We would like  $f(p_n) \approx 0$  and  $p_n \approx p_{n-1}$ The criteria can be

- ▶ For the ordinate:  $|f(p_n)| < \epsilon$
- For the abscissa:

• for the absolute error: 
$$|p_n - p_{n-1}| < \delta$$

• for the relative error: 
$$\frac{2|p_n - p_{n-1}|}{|p_n| + |p_{n-1}|} < \delta$$

May also use 
$$N = \operatorname{ceil} \frac{\ln(b-a) - \ln(\delta)}{\ln(2)}$$

### Advantages

- Always convergent
- The root bracket gets halved with each iteration -it is guaranteed to converge under its assumptions,

#### Drawbacks

Slow convergence

### Drawbacks (continued)

 If one of the initial guesses is close to the root, the convergence is slower

### Drawbacks (continued)

• If a function f(x) is such that it just touches the x-axis it will be unable to find the lower and upper guesses.



### Drawbacks (continued)

 Function changes sign but root does not exist



### Improvement to Bisection

- *Regula Falsi*, or *Method of False Position*.
- Use the shape of the curve as a cue
- Use a straight line between *y* values to select interior point
- As curve segments become small, this closely approximates the root

#### **False Position Method (Regula Falsi)**

Instead of bisecting the interval  $[x_0,x_1]$ , we choose the point where the straight line through the end points meet the x-axis as  $x_2$  and bracket the root with  $[x_0,x_2]$  or  $[x_2,x_1]$  depending on the sign of  $f(x_2)$ .



New end point  $x_2$ :

$$x_2 = x_1 - \left(\frac{x_1 - x_0}{f_1 - f_0}\right) f_1$$

#### **False Position Method (Pseudo Code)**



- 3. While  $(|f_2| \ge \epsilon)$  and  $(k \le m)$
- 4.  $x = x_2$ , the root.

#### : bisection method

#### Solve the equation

 $\sin x = 0$ 

| ·         |           |            |         | 7      |
|-----------|-----------|------------|---------|--------|
| using the | e initial | interval a | = 2 and | b = 4. |
|           |           |            |         |        |

|   | n  | $a_n$    | $b_n$    | $c_n$    | $ f(c_n) $            |
|---|----|----------|----------|----------|-----------------------|
|   | 0  | 2.000000 | 1.000000 | 3.000000 | 1.411200e-01          |
|   | 1  | 3.000000 | 4.000000 | 3.500000 | 3.507832e-01          |
|   | 2  | 3.000000 | 3.500000 | 3.250000 | 1.081951e-01          |
|   | 3  | 3.000000 | 3.250000 | 3.125000 | 1.659189 <b>e-</b> 02 |
|   | 4  | 3.125000 | 3.250000 | 3.187500 | 4.589122e-02          |
|   | 5  | 3.125000 | 3.187500 | 3.156250 | 1.465682e-02          |
|   | 6  | 3.125000 | 3.156250 | 3.140625 | 9.676534e-04          |
|   | 7  | 3.140625 | 3.156250 | 3.148438 | 6.844793 <b>e-</b> 03 |
|   | 8  | 3.140625 | 3.148438 | 3.144531 | 2.938592e-03          |
| ) | 9  | 3.140625 | 3.144531 | 3.142578 | 9.854713e-04          |
|   | 10 | 3.140625 | 3.142578 | 3.141602 | 8.908910e-06          |
|   | 11 | 3.140625 | 3.141602 | 3.141113 | 4.793723 <b>e-</b> 04 |
|   | 12 | 3.141113 | 3.141602 | 3.141357 | 2.352317e-04          |
|   | 13 | 3.141357 | 3.141602 | 3.141479 | 1.131614e-04          |
|   | 14 | 3.141479 | 3.141602 | 3.141541 | 5.212625e-05          |
|   | 15 | 3.141541 | 3.141602 | 3.141571 | 2.160867e-05          |
|   | 16 | 3.141571 | 3.141602 | 3.141586 | 6.349879e-06          |
|   | 17 | 3.141586 | 3.141602 | 3.141594 | 1.279516e-06          |
|   | 18 | 3.141586 | 3.141594 | 3.141590 | 2.535182e-06          |
|   | 19 | 3.141590 | 3.141594 | 3.141592 | 6.278330e-07          |

Experimentally, 18 iterations are required to compute  $\pi$  with 6 significant digits.

#### **False Position Method**

Solve the equation

 $\sin x = 0$ 

using the initial interval a = 2 and b = 4.

| п | $a_n$    | $b_n$    | Cn       | $ f(c_n) $   |
|---|----------|----------|----------|--------------|
| 0 | 2.000000 | 4.000000 | 3.091528 | 5.004366e-02 |
| 1 | 3.091528 | 4.000000 | 3.147875 | 6.282262e-03 |
| 2 | 3.091528 | 3.147875 | 3.141590 | 2.295634e-06 |
| 3 | 3.141590 | 3.147875 | 3.141593 | 1.509491e-11 |
| 4 | 3.141590 | 3.141593 | 3.141593 | 1.224647e-16 |
| 5 | 3.141593 | 3.141593 | 3.141593 | 1.224647e-16 |

Experimentally, 3 iterations are required to compute  $\pi$  with 6 significant digits.



- Two initial points  $x_0$ ,  $x_1$  are chosen
- The next approximation  $x_2$  is the point where the straight line joining  $(x_0, f_0)$  and  $(x_1, f_1)$  meet the x-axis
- Take  $(x_1, x_2)$  and repeat.

#### The secant Method (Pseudo Code)

Choose  $\in > 0$  (function tolerance  $|f(x)| \leq \in$ ) 1. m > 0 (Maximum number of iterations)  $x_0, x_1$  (Two initial points near the root )  $f_0 = f(x_0)$  $f_1 = f(x_1)$ k = 1 (iteration count) 2. Do {  $x_2 = x_1 - \left(\frac{x_1 - x_0}{f_1 - f_0}\right)f_1$  $x_0 = x_1$  $f_0 = f_1$  $X_1 \equiv X_2$  $f_1 = f(x_2)$ k = k + 1

3. While  $(|f_1| \ge \epsilon)$  and  $(m \le k)$ 

- Example
- As an example of the secant method, suppose we wish to find a root of the function
- $f(x) = \cos(x) + 2\sin(x) + x^2$ .
- A closed form solution for x does not exist so we must use a numerical technique. We will use x0 = 0 and x1 = -0.1 as our initial approximations. We will let the two values  $\varepsilon$ step = 0.001 and  $\varepsilon$ abs = 0.001 and we will halt after a maximum of N= 100 iterations.
- We will use four decimal digit arithmetic to find a solution and the resulting iteration is shown in Table 1.

| n | <b>X</b> <sub>n</sub> – 1 | x <sub>n</sub> | $\boldsymbol{x}_{n+1}$ | $ f(x_{n+1}) $ | $ x_{n+1} - x_n $ |
|---|---------------------------|----------------|------------------------|----------------|-------------------|
| 1 | 0.0                       | -0.1           | -0.5136                | 0.1522         | 0.4136            |
| 2 | -0.1                      | -0.5136        | -0.6100                | 0.0457         | 0.0964            |
| 3 | -0.5136                   | -0.6100        | -0.6514                | 0.0065         | 0.0414            |
| 4 | -0.6100                   | -0.6514        | -0.6582                | 0.0013         | 0.0068            |
| 5 | -0.6514                   | -0.6582        | -0.6598                | 0.0006         | 0.0016            |
| 6 | -0.6582                   | -0.6598        | -0.6595                | 0.0002         | 0.0003            |

### Newton-Raphson Method / Newton's Method

At an approximate  $x_k$  to the root, the curve is approximated by the tangent to the curve at  $x_k$  and the next approximation  $x_{k+1}$  is the point where the tangent meets the x-axis.





Tangent at 
$$(x_k, f_k)$$
:  
 $y = f(x_k) + f'(x_k)(x-x_k)$ 

This tangent cuts the x-axis at  $x_{k+1}$ 

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

<u>Warning</u>: If  $f'(x_k)$  is very small, method fails.

• Two function Evaluations per iteration

#### Newton's Method - Pseudo code

1. Choose  $\in > 0$  (function tolerance  $|f(x)| < \in$ ) m > 0 (Maximum number of iterations)  $x_0$  - initial approximation k - iteration count Compute  $f(x_0)$ 2. Do {  $q = f'(x_0)$  (evaluate derivative at  $x_0$ )  $x_1 = x_0 - f_0/q$  $x_0 = x_1$  $f_0 = f(x_0)$ k = k + 13. While  $(|f_0| \ge \epsilon)$  and  $(k \le m)$ 

4.  $x = x_1$  the root.

### **Newton's Method for finding the square** root of a number $x = \sqrt{a}$

$$f(\mathbf{x}) = \mathbf{x}^2 - \mathbf{a}^2 = 0$$
$$x_{k+1} = x_k - \frac{x_k^2 - a^2}{2x_k}$$

Example : a = 5, initial approximation  $x_0 = 2$ .

$$x_1 = 2.25$$
  
 $x_2 = 2.236111111$   
 $x_3 = 2.236067978$   
 $x_4 = 2.236067978$ 

- As an example of Newton's method, suppose we wish to find a root of the function  $f(x) = \cos(x) + 2 \sin(x) + x^2.$
- A closed form solution for x does not exist so we must use a numerical technique. We will use x0 = 0 as our initial approximation. We will let the two values  $\varepsilon step = 0.001$  and  $\varepsilon abs = 0.001$  and we will halt after a maximum of N = 100 iterations.
- From calculus, we know that the derivative of the given function is
- $f'(x) = -\sin(x) + 2\cos(x) + 2x.$
- We will use four decimal digit arithmetic to find a solution and the resulting iteration is shown in

Table 2.

#### Table 2. Newton's method applied to $f(x) = cos(x) + 2 sin(x) + x^2$ .

| n | Xn      | <b>X</b> <sub>n + 1</sub> | $ f(x_{n+1}) $ | $ \mathbf{x}_{n+1} - \mathbf{x}_n $ |
|---|---------|---------------------------|----------------|-------------------------------------|
| 0 | 0.0     | -0.5000                   | 0.1688         | 0.5000                              |
| 1 | -0.5000 | -0.6368                   | 0.0205         | 0.1368                              |
| 2 | -0.6368 | -0.6589                   | 0.0008000      | 0.02210                             |
| 3 | -0.6589 | -0.6598                   | 0.0006         | 0.0009                              |

Thus, with the last step, both halting conditions are met, and therefore, after four iterations, our approximation to the root is -0.6598 .

#### **General remarks on Convergence**

- # The false position method in general converges faster than the bisection method. (But not always).
- # The bisection method and the false position method are guaranteed for convergence.
- # The secant method and the Newton-Raphson method are not guaranteed for convergence.

### Comparison of Methods

| Method                      | Initial<br>guesses | Convergence rate                           | Stability             |                                            |
|-----------------------------|--------------------|--------------------------------------------|-----------------------|--------------------------------------------|
| Bisection                   | 2                  | Slow                                       | Always                |                                            |
| False position              | 2                  | Medium                                     | Always                |                                            |
| Fixed-pointed iteration     | 1                  | Slow                                       | Possibly<br>divergent |                                            |
| Newton-Raphson              | 1                  | Fast                                       | Possibly<br>divergent | Evaluate f'(x)                             |
| Modified Newton-<br>Raphson | 1                  | Fast: multiple roots<br>Medium:single root | Possibly<br>divergent | F''(x) and $f'(x)$                         |
| Secant                      | 2                  | Medium to fast                             | Possibly divergent    | Initial guesses don't have to bracket root |
| Modified secant             | 2                  | Fast                                       | Possibly<br>divergent |                                            |